Lecture 19: Kac-moody Algebra Actions on Categories, I

نویسنده

  • IVAN LOSEV
چکیده

We have started this class by studying the representation theory of the symmetric group Sn over the complex numbers. We finish by giving a brief introduction to the representation theory of Sn over a field F of positive characteristic p. We will also establish a connection between the representations of ŝlp and those of FSn. This connection was one of motivations to consider Kac-Moody algebra actions on categories. We would like to point out that while the representation theory of Sn in characteristic 0 is a classical and very well understood subject (all representations are completely reducible, the irreducible ones are classified by the Young diagrams, and character formulas are known in some way, at least), the representation theory in characteristic p is very complicated (representations are no longer completely reducible, and, although the classification of the irreducible representations is known, currently, there is not even a conjecture on their characters).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The two parameter quantum groups‎ ‎$U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra‎ ‎and their equitable presentation

We construct a family of two parameter quantum grou-\ps‎ ‎$U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody‎ ‎algebra corresponding to symmetrizable admissible Borcherds Cartan‎ ‎matrix‎. ‎We also construct the $textbf{A}$-form $U_{textbf{A}}$ and‎ ‎the classical limit of $U_{r,s}(mathfrak{g})$‎. ‎Furthermore‎, ‎we‎ ‎display the equitable presentation for a subalgebra‎ ‎$U_{r...

متن کامل

Wk structure of generalized Frenkel-Kac construction for SU(2)-level k Kac-Moody algebra

Wk structure underlying the transverse realization of SU(2) at level k is analyzed. Extension of the equivalence existing between covariant and lightcone gauge realization of affine Kac-Moody algebra to Wk algebras is given. Higher spin generators related to parafermions are extracted from the operator product algebra of the generators and are showed to be written in terms of only one free boso...

متن کامل

Face Functors for Klr Algebras

Simple representations of KLR algebras can be used to realize the infinity crystal for the corresponding symmetrizable Kac-Moody algebra. It was recently shown that, in finite and affine types, certain sub-categories of “cuspidal” representations realize crystals for sub-Kac-Moody algebras. Here we put that observation on a firmer categorical footing by exhibiting a corresponding functor betwee...

متن کامل

Lecture 6: Kac-moody Algebras, Reductive Groups, and Representations

We start by introducing Kac-Moody algebras and completing the classification of finite dimensional semisimple Lie algebras. We then discuss the classification of finite dimensional representations of semisimple Lie algebras (and, more generally, integrable highest weight representations of Kac-Moody algebras). We finish by discussing the structure and representation theory of reductive algebrai...

متن کامل

Braided-Lie bialgebras associated to Kac–Moody algebras

Braided-Lie bialgebras have been introduced by Majid, as the Lie versions of Hopf algebras in braided categories. In this paper we extend previous work of Majid and of ours to show that there is a braided-Lie bialgebra associated to each inclusion of Kac–Moody bialgebras. Doing so, we obtain many new examples of infinite-dimensional braided-Lie bialgebras. We analyze further the case of untwist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015